The Use of Body Worn Sensors for Detecting the Vibrations Acting on the Lower Back in Alpine Ski Racing
نویسندگان
چکیده
This study explored the use of body worn sensors to evaluate the vibrations that act on the human body in alpine ski racing from a general and a back overuse injury prevention perspective. In the course of a biomechanical field experiment, six male European Cup-level athletes each performed two runs on a typical giant slalom (GS) and slalom (SL) course, resulting in a total of 192 analyzed turns. Three-dimensional accelerations were measured by six inertial measurement units placed on the right and left shanks, right and left thighs, sacrum, and sternum. Based on these data, power spectral density (PSD; i.e., the signal's power distribution over frequency) was determined for all segments analyzed. Additionally, as a measure expressing the severity of vibration exposure, root-mean-square (RMS) acceleration acting on the lower back was calculated based on the inertial acceleration along the sacrum's longitudinal axis. In both GS and SL skiing, the PSD values of the vibrations acting at the shank were found to be largest for frequencies below 30 Hz. While being transmitted through the body, these vibrations were successively attenuated by the knee and hip joint. At the lower back (i.e., sacrum sensor), PSD values were especially pronounced for frequencies between 4 and 10 Hz, whereas a corresponding comparison between GS and SL revealed higher PSD values and larger RMS values for GS. Because vibrations in this particular range (i.e., 4 to 10 Hz) include the spine's resonant frequency and are known to increase the risk of structural deteriorations/abnormalities of the spine, they may be considered potential components of mechanisms leading to overuse injuries of the back in alpine ski racing. Accordingly, any measure to control and/or reduce such skiing-related vibrations to a minimum should be recognized and applied. In this connection, wearable sensor technologies might help to better monitor and manage the overall back overuse-relevant vibration exposure of athletes in regular training and or competition settings in the near future.
منابع مشابه
A survey of Canadian Alpine ski racing coaches regarding spinal protective devices for their athletes.
INTRODUCTION Spinal protective devices are a recent addition to the protective equipment worn by competitive and recreational alpine skiers and snowboarders. Their rate of use is not documented at the time of publication. The objective of this study was to examine the current attitudes and recommendations of Canadian alpine ski racing coaches towards spinal protective devices. METHODS A conve...
متن کاملWhole-Body Vibrations Associated With Alpine Skiing: A Risk Factor for Low Back Pain?
Alpine skiing, both recreational and competitive, is associated with high rates of injury. Numerous studies have shown that occupational exposure to whole-body vibrations is strongly related to lower back pain and some suggest that, in particular, vibrations of lower frequencies could lead to overuse injuries of the back in connection with alpine ski racing. However, it is not yet known which f...
متن کامل3d Measurement of Lower Limb Kinematics in Alpine Ski Racing Using Inertial Sensors
INTRODUCTION: In alpine skiing monitoring the 3D segment kinematics is crucial to better understanding the injury risk factors and performance aspects. 3D camcorders have been primarily used to evaluate segment kinematics. While these systems allow valid measurement, their complexity limits their use to research applications. Alternatively, wearable systems fusing inertial measurement units (IM...
متن کاملUsing Inertial Sensors for Reconstructing 3d Full-body Movement in Sports – Possibilities and Limitations on the Example of Alpine Ski Racing
The present study investigates if inertial sensors could be used for reconstructing 3D full body movements in sports. On the example of alpine ski racing, it was demonstrated that inertial sensors allow computing meaningful parameters related to a skier’s overall posture. While some parameters were obtained with sufficient accuracy and precision, others were not obtained reliably using inertial...
متن کاملThree-Dimensional Body and Centre of Mass Kinematics in Alpine Ski Racing Using Differential GNSS and Inertial Sensors
A key point in human movement analysis is measuring the trajectory of a person’s center of mass (CoM). For outdoor applications, differential Global Navigation Satellite Systems (GNSS) can be used for tracking persons since they allow measuring the trajectory and speed of the GNSS antenna with centimeter accuracy. However, the antenna cannot be placed exactly at the person’s CoM, but rather on ...
متن کامل